- Introduce unique face ID generation and enhance face matching based on proximity and size - Refactor face ID generation to use centroids and size for better accuracy - Update tracked face data structure to include centroid, zone, timestamp, and size - Improve comments for clarity on face tracking and matching processes
274 lines
11 KiB
Python
274 lines
11 KiB
Python
"""
|
|
Zone-based Entry/Exit Tracker
|
|
Tracks people entering and exiting based on zone detection with cooldown mechanism.
|
|
"""
|
|
|
|
import time
|
|
import cv2
|
|
from collections import defaultdict
|
|
|
|
|
|
class ZoneTracker:
|
|
def __init__(self, frame_width, entry_zone_percent=0.4, exit_zone_percent=0.4,
|
|
cooldown_seconds=2.0, center_buffer_percent=0.1):
|
|
"""
|
|
Initialize the zone tracker.
|
|
|
|
Args:
|
|
frame_width: Width of the video frame in pixels
|
|
entry_zone_percent: Percentage of frame width for entry zone (left side)
|
|
exit_zone_percent: Percentage of frame width for exit zone (right side)
|
|
cooldown_seconds: Time in seconds before same person can be counted again
|
|
center_buffer_percent: Percentage of center to ignore (prevents false counts)
|
|
"""
|
|
self.frame_width = frame_width
|
|
self.entry_zone_percent = entry_zone_percent
|
|
self.exit_zone_percent = exit_zone_percent
|
|
self.cooldown_seconds = cooldown_seconds
|
|
self.center_buffer_percent = center_buffer_percent
|
|
|
|
# Calculate zone boundaries
|
|
self.entry_zone_end = int(frame_width * entry_zone_percent)
|
|
buffer_width = int(frame_width * center_buffer_percent)
|
|
self.center_start = int(frame_width / 2 - buffer_width / 2)
|
|
self.center_end = int(frame_width / 2 + buffer_width / 2)
|
|
self.exit_zone_start = int(frame_width * (1 - exit_zone_percent))
|
|
|
|
# Counters
|
|
self.total_entered = 0
|
|
self.total_exited = 0
|
|
|
|
# Track faces with timestamps to prevent double-counting
|
|
# Key: face_id (unique ID), Value: {'centroid': (x, y), 'zone': zone, 'timestamp': time, 'size': (w, h)}
|
|
self.tracked_faces = {}
|
|
self.face_cooldowns = defaultdict(float)
|
|
|
|
# Track last seen zone for each face (to detect zone transitions)
|
|
self.last_zone = {}
|
|
|
|
# Unique face ID counter
|
|
self.next_face_id = 1
|
|
|
|
def get_zone(self, face_x, face_w):
|
|
"""
|
|
Determine which zone a face is in based on its position.
|
|
|
|
Args:
|
|
face_x: X coordinate of face (left edge)
|
|
face_w: Width of face bounding box
|
|
face_center: Center X of the face
|
|
|
|
Returns:
|
|
'entry' if in entry zone, 'exit' if in exit zone, 'center' if in buffer, None otherwise
|
|
"""
|
|
face_center = face_x + face_w // 2
|
|
|
|
# Check if in center buffer zone (ignore)
|
|
if self.center_start <= face_center <= self.center_end:
|
|
return 'center'
|
|
|
|
# Check entry zone (left side)
|
|
if face_center < self.entry_zone_end:
|
|
return 'entry'
|
|
|
|
# Check exit zone (right side)
|
|
if face_center > self.exit_zone_start:
|
|
return 'exit'
|
|
|
|
# In the middle zone (between entry/exit and center buffer)
|
|
return None
|
|
|
|
def _calculate_centroid(self, face_x, face_y, face_w, face_h):
|
|
"""Calculate the centroid of a face bounding box."""
|
|
return (face_x + face_w // 2, face_y + face_h // 2)
|
|
|
|
def _calculate_distance(self, pt1, pt2):
|
|
"""Calculate Euclidean distance between two points."""
|
|
return ((pt1[0] - pt2[0])**2 + (pt1[1] - pt2[1])**2)**0.5
|
|
|
|
def _match_face_to_tracked(self, centroid, size):
|
|
"""
|
|
Match a detected face to an existing tracked face based on proximity.
|
|
|
|
Args:
|
|
centroid: (x, y) centroid of the detected face
|
|
size: (w, h) size of the detected face
|
|
|
|
Returns:
|
|
face_id if matched, None if new face
|
|
"""
|
|
max_distance = 100 # Maximum pixel distance to consider it the same face
|
|
max_size_diff = 50 # Maximum size difference to consider it the same face
|
|
|
|
for face_id, face_data in self.tracked_faces.items():
|
|
# Skip if face hasn't been seen recently (within last 2 seconds)
|
|
time_since_seen = time.time() - face_data.get('timestamp', 0)
|
|
if time_since_seen > 2.0:
|
|
continue
|
|
|
|
tracked_centroid = face_data.get('centroid')
|
|
tracked_size = face_data.get('size', (0, 0))
|
|
|
|
if tracked_centroid:
|
|
distance = self._calculate_distance(centroid, tracked_centroid)
|
|
size_diff = abs(size[0] + size[1] - tracked_size[0] - tracked_size[1])
|
|
|
|
# Match if close enough in position and size
|
|
if distance < max_distance and size_diff < max_size_diff:
|
|
return face_id
|
|
|
|
return None
|
|
|
|
def process_faces(self, faces):
|
|
"""
|
|
Process detected faces and update entry/exit counts.
|
|
|
|
Args:
|
|
faces: List of tuples (x, y, w, h, confidence) from face detector
|
|
|
|
Returns:
|
|
Dictionary with updated counts and zone info
|
|
"""
|
|
current_time = time.time()
|
|
current_zones = {}
|
|
|
|
# Process each detected face
|
|
for face in faces:
|
|
face_x, face_y, face_w, face_h, confidence = face
|
|
centroid = self._calculate_centroid(face_x, face_y, face_w, face_h)
|
|
zone = self.get_zone(face_x, face_w)
|
|
|
|
if zone is None or zone == 'center':
|
|
continue
|
|
|
|
# Try to match this face to an existing tracked face
|
|
face_id = self._match_face_to_tracked(centroid, (face_w, face_h))
|
|
|
|
if face_id is None:
|
|
# New face - assign a new ID
|
|
face_id = self.next_face_id
|
|
self.next_face_id += 1
|
|
|
|
current_zones[face_id] = zone
|
|
|
|
# Update tracked face data
|
|
self.tracked_faces[face_id] = {
|
|
'centroid': centroid,
|
|
'zone': zone,
|
|
'timestamp': current_time,
|
|
'size': (face_w, face_h)
|
|
}
|
|
|
|
# Check if this face is in cooldown
|
|
if face_id in self.face_cooldowns:
|
|
if current_time - self.face_cooldowns[face_id] < self.cooldown_seconds:
|
|
# Still in cooldown, update zone but don't count
|
|
self.last_zone[face_id] = zone
|
|
continue
|
|
|
|
# Check for zone transitions or first detection
|
|
if face_id not in self.last_zone:
|
|
# First time seeing this face - count if in entry/exit zone
|
|
self.last_zone[face_id] = zone
|
|
|
|
# Count on first detection in entry/exit zones
|
|
if zone == 'entry':
|
|
# Person entered (first detected in entry zone)
|
|
self.total_entered += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
elif zone == 'exit':
|
|
# Person exited (first detected in exit zone)
|
|
self.total_exited += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
else:
|
|
# Face has been seen before - check for valid transition
|
|
last_zone = self.last_zone[face_id]
|
|
|
|
# Only count if we have a clear zone transition
|
|
# Entry: person transitions to entry zone from non-entry zone
|
|
# Exit: person transitions to exit zone from non-exit zone
|
|
if zone == 'entry' and last_zone != 'entry':
|
|
# Person entered (transitioned to entry zone)
|
|
self.total_entered += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
self.last_zone[face_id] = zone
|
|
elif zone == 'exit' and last_zone != 'exit':
|
|
# Person exited (transitioned to exit zone)
|
|
self.total_exited += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
self.last_zone[face_id] = zone
|
|
else:
|
|
# Same zone or transition we don't care about - just update
|
|
self.last_zone[face_id] = zone
|
|
|
|
# Clean up old tracking data for faces no longer detected
|
|
faces_to_remove = []
|
|
for face_id in list(self.last_zone.keys()):
|
|
if face_id not in current_zones:
|
|
# Face no longer detected, but keep in memory for a bit
|
|
if face_id in self.tracked_faces:
|
|
last_seen = self.tracked_faces[face_id].get('timestamp', 0)
|
|
if current_time - last_seen > 5.0: # Remove after 5 seconds
|
|
faces_to_remove.append(face_id)
|
|
|
|
for face_id in faces_to_remove:
|
|
if face_id in self.last_zone:
|
|
del self.last_zone[face_id]
|
|
if face_id in self.tracked_faces:
|
|
del self.tracked_faces[face_id]
|
|
if face_id in self.face_cooldowns:
|
|
del self.face_cooldowns[face_id]
|
|
|
|
return {
|
|
'total_entered': self.total_entered,
|
|
'total_exited': self.total_exited,
|
|
'current_occupancy': self.total_entered - self.total_exited,
|
|
'zones': current_zones
|
|
}
|
|
|
|
def get_counts(self):
|
|
"""Get current count statistics."""
|
|
return {
|
|
'total_entered': self.total_entered,
|
|
'total_exited': self.total_exited,
|
|
'current_occupancy': self.total_entered - self.total_exited
|
|
}
|
|
|
|
def reset_counts(self):
|
|
"""Reset all counters and tracking data."""
|
|
self.total_entered = 0
|
|
self.total_exited = 0
|
|
self.tracked_faces.clear()
|
|
self.face_cooldowns.clear()
|
|
self.last_zone.clear()
|
|
|
|
def draw_zones(self, frame):
|
|
"""
|
|
Draw zone boundaries on the frame for visualization.
|
|
|
|
Args:
|
|
frame: Frame to draw on
|
|
|
|
Returns:
|
|
Frame with zone boundaries drawn
|
|
"""
|
|
result_frame = frame.copy()
|
|
h = frame.shape[0]
|
|
|
|
# Draw entry zone (left, green)
|
|
cv2.rectangle(result_frame, (0, 0), (self.entry_zone_end, h), (0, 255, 0), 2)
|
|
cv2.putText(result_frame, "ENTRY", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
|
|
|
# Draw exit zone (right, red)
|
|
cv2.rectangle(result_frame, (self.exit_zone_start, 0), (self.frame_width, h), (0, 0, 255), 2)
|
|
cv2.putText(result_frame, "EXIT", (self.exit_zone_start + 10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
|
|
|
# Draw center buffer (yellow, semi-transparent)
|
|
overlay = result_frame.copy()
|
|
cv2.rectangle(overlay, (self.center_start, 0), (self.center_end, h), (0, 255, 255), -1)
|
|
cv2.addWeighted(overlay, 0.2, result_frame, 0.8, 0, result_frame)
|
|
|
|
return result_frame
|