- Add Flask application with MJPEG video streaming - Implement OpenCV DNN face detection module - Add zone-based entry/exit tracking with cooldown mechanism - Create web interface with real-time WebSocket updates - Add model download script and comprehensive README - Include OpenCV DNN model files for face detection
219 lines
8.3 KiB
Python
219 lines
8.3 KiB
Python
"""
|
|
Zone-based Entry/Exit Tracker
|
|
Tracks people entering and exiting based on zone detection with cooldown mechanism.
|
|
"""
|
|
|
|
import time
|
|
import cv2
|
|
from collections import defaultdict
|
|
|
|
|
|
class ZoneTracker:
|
|
def __init__(self, frame_width, entry_zone_percent=0.4, exit_zone_percent=0.4,
|
|
cooldown_seconds=2.0, center_buffer_percent=0.1):
|
|
"""
|
|
Initialize the zone tracker.
|
|
|
|
Args:
|
|
frame_width: Width of the video frame in pixels
|
|
entry_zone_percent: Percentage of frame width for entry zone (left side)
|
|
exit_zone_percent: Percentage of frame width for exit zone (right side)
|
|
cooldown_seconds: Time in seconds before same person can be counted again
|
|
center_buffer_percent: Percentage of center to ignore (prevents false counts)
|
|
"""
|
|
self.frame_width = frame_width
|
|
self.entry_zone_percent = entry_zone_percent
|
|
self.exit_zone_percent = exit_zone_percent
|
|
self.cooldown_seconds = cooldown_seconds
|
|
self.center_buffer_percent = center_buffer_percent
|
|
|
|
# Calculate zone boundaries
|
|
self.entry_zone_end = int(frame_width * entry_zone_percent)
|
|
buffer_width = int(frame_width * center_buffer_percent)
|
|
self.center_start = int(frame_width / 2 - buffer_width / 2)
|
|
self.center_end = int(frame_width / 2 + buffer_width / 2)
|
|
self.exit_zone_start = int(frame_width * (1 - exit_zone_percent))
|
|
|
|
# Counters
|
|
self.total_entered = 0
|
|
self.total_exited = 0
|
|
|
|
# Track faces with timestamps to prevent double-counting
|
|
# Key: face_id (centroid hash), Value: (zone, timestamp)
|
|
self.tracked_faces = {}
|
|
self.face_cooldowns = defaultdict(float)
|
|
|
|
# Track last seen zone for each face (to detect zone transitions)
|
|
self.last_zone = {}
|
|
|
|
def get_zone(self, face_x, face_w):
|
|
"""
|
|
Determine which zone a face is in based on its position.
|
|
|
|
Args:
|
|
face_x: X coordinate of face (left edge)
|
|
face_w: Width of face bounding box
|
|
face_center: Center X of the face
|
|
|
|
Returns:
|
|
'entry' if in entry zone, 'exit' if in exit zone, 'center' if in buffer, None otherwise
|
|
"""
|
|
face_center = face_x + face_w // 2
|
|
|
|
# Check if in center buffer zone (ignore)
|
|
if self.center_start <= face_center <= self.center_end:
|
|
return 'center'
|
|
|
|
# Check entry zone (left side)
|
|
if face_center < self.entry_zone_end:
|
|
return 'entry'
|
|
|
|
# Check exit zone (right side)
|
|
if face_center > self.exit_zone_start:
|
|
return 'exit'
|
|
|
|
# In the middle zone (between entry/exit and center buffer)
|
|
return None
|
|
|
|
def _get_face_id(self, face_x, face_y, face_w, face_h):
|
|
"""
|
|
Generate a simple ID for a face based on its position and size.
|
|
This is a basic approach - in production, use proper tracking algorithms.
|
|
|
|
Args:
|
|
face_x, face_y: Top-left coordinates
|
|
face_w, face_h: Width and height
|
|
|
|
Returns:
|
|
A simple hash-like ID for tracking
|
|
"""
|
|
# Use approximate position and size to create a simple ID
|
|
# This helps group similar detections as the same person
|
|
grid_x = face_x // 50
|
|
grid_y = face_y // 50
|
|
size_category = (face_w + face_h) // 50
|
|
return f"{grid_x}_{grid_y}_{size_category}"
|
|
|
|
def process_faces(self, faces):
|
|
"""
|
|
Process detected faces and update entry/exit counts.
|
|
|
|
Args:
|
|
faces: List of tuples (x, y, w, h, confidence) from face detector
|
|
|
|
Returns:
|
|
Dictionary with updated counts and zone info
|
|
"""
|
|
current_time = time.time()
|
|
current_zones = {}
|
|
|
|
# Process each detected face
|
|
for face in faces:
|
|
face_x, face_y, face_w, face_h, confidence = face
|
|
face_id = self._get_face_id(face_x, face_y, face_w, face_h)
|
|
zone = self.get_zone(face_x, face_w)
|
|
|
|
if zone is None or zone == 'center':
|
|
continue
|
|
|
|
current_zones[face_id] = zone
|
|
|
|
# Check if this face is in cooldown
|
|
if face_id in self.face_cooldowns:
|
|
if current_time - self.face_cooldowns[face_id] < self.cooldown_seconds:
|
|
continue # Still in cooldown, skip
|
|
|
|
# Check for zone transitions or first detection
|
|
if face_id not in self.last_zone:
|
|
# First time seeing this face - mark the zone
|
|
self.last_zone[face_id] = zone
|
|
self.tracked_faces[face_id] = (zone, current_time)
|
|
else:
|
|
# Face has been seen before - check for valid transition
|
|
last_zone = self.last_zone[face_id]
|
|
|
|
# Only count if we have a clear zone assignment
|
|
# Entry: person appears in entry zone
|
|
# Exit: person appears in exit zone
|
|
if zone == 'entry' and last_zone != 'entry':
|
|
# Person entered
|
|
self.total_entered += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
self.last_zone[face_id] = zone
|
|
elif zone == 'exit' and last_zone != 'exit':
|
|
# Person exited
|
|
self.total_exited += 1
|
|
self.face_cooldowns[face_id] = current_time
|
|
self.last_zone[face_id] = zone
|
|
|
|
# Clean up old tracking data for faces no longer detected
|
|
faces_to_remove = []
|
|
for face_id in self.last_zone:
|
|
if face_id not in current_zones:
|
|
# Face no longer detected, but keep in memory for a bit
|
|
if face_id in self.tracked_faces:
|
|
last_seen = self.tracked_faces[face_id][1]
|
|
if current_time - last_seen > 5.0: # Remove after 5 seconds
|
|
faces_to_remove.append(face_id)
|
|
|
|
for face_id in faces_to_remove:
|
|
if face_id in self.last_zone:
|
|
del self.last_zone[face_id]
|
|
if face_id in self.tracked_faces:
|
|
del self.tracked_faces[face_id]
|
|
if face_id in self.face_cooldowns:
|
|
del self.face_cooldowns[face_id]
|
|
|
|
return {
|
|
'total_entered': self.total_entered,
|
|
'total_exited': self.total_exited,
|
|
'current_occupancy': self.total_entered - self.total_exited,
|
|
'zones': current_zones
|
|
}
|
|
|
|
def get_counts(self):
|
|
"""Get current count statistics."""
|
|
return {
|
|
'total_entered': self.total_entered,
|
|
'total_exited': self.total_exited,
|
|
'current_occupancy': self.total_entered - self.total_exited
|
|
}
|
|
|
|
def reset_counts(self):
|
|
"""Reset all counters and tracking data."""
|
|
self.total_entered = 0
|
|
self.total_exited = 0
|
|
self.tracked_faces.clear()
|
|
self.face_cooldowns.clear()
|
|
self.last_zone.clear()
|
|
|
|
def draw_zones(self, frame):
|
|
"""
|
|
Draw zone boundaries on the frame for visualization.
|
|
|
|
Args:
|
|
frame: Frame to draw on
|
|
|
|
Returns:
|
|
Frame with zone boundaries drawn
|
|
"""
|
|
result_frame = frame.copy()
|
|
h = frame.shape[0]
|
|
|
|
# Draw entry zone (left, green)
|
|
cv2.rectangle(result_frame, (0, 0), (self.entry_zone_end, h), (0, 255, 0), 2)
|
|
cv2.putText(result_frame, "ENTRY", (10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
|
|
|
|
# Draw exit zone (right, red)
|
|
cv2.rectangle(result_frame, (self.exit_zone_start, 0), (self.frame_width, h), (0, 0, 255), 2)
|
|
cv2.putText(result_frame, "EXIT", (self.exit_zone_start + 10, 30),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
|
|
|
|
# Draw center buffer (yellow, semi-transparent)
|
|
overlay = result_frame.copy()
|
|
cv2.rectangle(overlay, (self.center_start, 0), (self.center_end, h), (0, 255, 255), -1)
|
|
cv2.addWeighted(overlay, 0.2, result_frame, 0.8, 0, result_frame)
|
|
|
|
return result_frame
|