feat: migrate from face detection to HOG person detection

This commit is contained in:
2026-01-21 11:39:32 +01:00
parent cae56c40cc
commit b68fa2614e
7 changed files with 158 additions and 1987 deletions

129
person_detector.py Normal file
View File

@@ -0,0 +1,129 @@
"""
Person Detection Module using OpenCV HOG (Histogram of Oriented Gradients).
Uses built-in OpenCV people detector - no external model files required.
"""
import cv2
import numpy as np
class PersonDetector:
def __init__(self, model_dir=None, confidence_threshold=0.6):
"""
Initialize the person detector with HOG descriptor.
Args:
model_dir: Ignored for HOG (kept for API compatibility)
confidence_threshold: Threshold for detection weights
"""
self.confidence_threshold = confidence_threshold
# Initialize HOG descriptor/person detector
self.hog = cv2.HOGDescriptor()
self.hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
print("Initialized HOG Person Detector")
def detect_people(self, frame):
"""
Detect people in a frame using HOG.
Args:
frame: BGR image frame from OpenCV
Returns:
List of tuples (x, y, w, h, confidence) for each detected person
"""
# Resize for faster processing (optional, but HOG is computationally expensive)
# Using a slightly smaller scale can speed things up significantly
scale = 1.0
if frame.shape[1] > 640:
scale = 640 / frame.shape[1]
frame_small = cv2.resize(frame, None, fx=scale, fy=scale)
else:
frame_small = frame
# Detect people
# winStride: step size in x and y
# padding: padding around the input
# scale: coefficient of the detection window increase
(rects, weights) = self.hog.detectMultiScale(
frame_small,
winStride=(4, 4),
padding=(8, 8),
scale=1.05,
hitThreshold=0.0 # Default
)
people = []
# Convert detected rectangles to our format
for i, (x, y, w, h) in enumerate(rects):
confidence = weights[i]
# HOG returns confidence scores, usually > 0.
# We can filter if needed.
check_conf = float(confidence) if isinstance(confidence, (float, np.float32, np.float64)) else float(confidence[0])
if check_conf > self.confidence_threshold:
# Scale back up if we resized
if scale != 1.0:
x = int(x / scale)
y = int(y / scale)
w = int(w / scale)
h = int(h / scale)
# Size filtering
# Ignore detections that are too small (noise) or too large (walls/windows)
# Assumes 640x480 or similar resolution
if w < 40 or w > 400 or h < 80 or h > 480:
continue
# Ensure coordinates are within frame bounds (simple clamp)
x = max(0, x)
y = max(0, y)
people.append((x, y, w, h, check_conf))
return people
detect_faces = detect_people # Alias for compatibility
def draw_people(self, frame, people, color=(0, 255, 0), thickness=2):
"""
Draw bounding boxes around detected people.
"""
result_frame = frame.copy()
for (x, y, w, h, confidence) in people:
cv2.rectangle(result_frame, (x, y), (x + w, y + h), color, thickness)
# Draw label
label = f"Person: {confidence:.2f}"
# Get label size
(label_w, label_h), baseline = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1
)
# Draw background rectangle for label
cv2.rectangle(
result_frame,
(x, y - label_h - 10),
(x + label_w, y),
color,
-1
)
# Draw text
cv2.putText(
result_frame,
label,
(x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1
)
return result_frame
draw_faces = draw_people # Alias for compatibility