feat: initial implementation of People Counter web app

- Add Flask application with MJPEG video streaming
- Implement OpenCV DNN face detection module
- Add zone-based entry/exit tracking with cooldown mechanism
- Create web interface with real-time WebSocket updates
- Add model download script and comprehensive README
- Include OpenCV DNN model files for face detection
This commit is contained in:
2026-01-20 00:44:06 +01:00
commit 432f0378bf
13 changed files with 3089 additions and 0 deletions

78
download_models.py Normal file
View File

@@ -0,0 +1,78 @@
#!/usr/bin/env python3
"""
Script to download OpenCV DNN face detection model files.
Downloads the required prototxt and caffemodel files for face detection.
"""
import os
import urllib.request
from pathlib import Path
def download_file(url, destination):
"""Download a file from URL to destination."""
print(f"Downloading {os.path.basename(destination)}...")
try:
urllib.request.urlretrieve(url, destination)
print(f"✓ Successfully downloaded {os.path.basename(destination)}")
return True
except Exception as e:
print(f"✗ Error downloading {os.path.basename(destination)}: {e}")
return False
def main():
"""Main function to download model files."""
# Create models directory if it doesn't exist
models_dir = Path("models")
models_dir.mkdir(exist_ok=True)
# Model file URLs
prototxt_url = "https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt"
model_url = "https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel"
# Destination paths
prototxt_path = models_dir / "deploy.prototxt"
model_path = models_dir / "res10_300x300_ssd_iter_140000.caffemodel"
print("=" * 60)
print("OpenCV DNN Face Detection Model Downloader")
print("=" * 60)
print()
# Check if files already exist
if prototxt_path.exists():
print(f"{prototxt_path.name} already exists. Skipping download.")
else:
success = download_file(prototxt_url, prototxt_path)
if not success:
print("\nAlternative: You can manually download deploy.prototxt from:")
print("https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt")
print()
if model_path.exists():
print(f"{model_path.name} already exists. Skipping download.")
else:
success = download_file(model_url, model_path)
if not success:
print("\n⚠ Warning: The caffemodel file is large (~10MB) and may require manual download.")
print("Alternative download methods:")
print("1. Using wget:")
print(f" wget -O {model_path} {model_url}")
print("2. Using curl:")
print(f" curl -L -o {model_path} {model_url}")
print("3. Direct browser download:")
print(f" {model_url}")
print()
print()
print("=" * 60)
if prototxt_path.exists() and model_path.exists():
print("✓ All model files are ready!")
else:
print("⚠ Some files may be missing. Please check the files above.")
print("=" * 60)
if __name__ == "__main__":
main()