feat: initial implementation of People Counter web app

- Add Flask application with MJPEG video streaming
- Implement OpenCV DNN face detection module
- Add zone-based entry/exit tracking with cooldown mechanism
- Create web interface with real-time WebSocket updates
- Add model download script and comprehensive README
- Include OpenCV DNN model files for face detection
This commit is contained in:
2026-01-20 00:44:06 +01:00
commit 432f0378bf
13 changed files with 3089 additions and 0 deletions

191
camera.py Normal file
View File

@@ -0,0 +1,191 @@
"""
Camera Module for USB camera capture and frame processing
Integrates face detection and zone tracking.
"""
import cv2
import threading
import time
from face_detector import FaceDetector
from zone_tracker import ZoneTracker
class Camera:
def __init__(self, camera_index=0, process_every_n_frames=3,
face_confidence=0.5, frame_width=640, frame_height=480):
"""
Initialize camera and processing components.
Args:
camera_index: Index of the USB camera (usually 0)
process_every_n_frames: Process face detection every N frames for performance
face_confidence: Confidence threshold for face detection
frame_width: Desired frame width
frame_height: Desired frame height
"""
self.camera_index = camera_index
self.process_every_n_frames = process_every_n_frames
self.frame_width = frame_width
self.frame_height = frame_height
# Initialize camera
self.cap = cv2.VideoCapture(camera_index)
if not self.cap.isOpened():
raise RuntimeError(f"Failed to open camera {camera_index}")
# Set camera properties
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, frame_width)
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, frame_height)
# Initialize face detector and zone tracker
self.face_detector = FaceDetector(confidence_threshold=face_confidence)
self.zone_tracker = None # Will be initialized after first frame
# Frame processing state
self.frame_counter = 0
self.current_frame = None
self.processed_frame = None
self.current_counts = {
'total_entered': 0,
'total_exited': 0,
'current_occupancy': 0
}
# Thread safety
self.lock = threading.Lock()
self.running = False
self.processing_thread = None
# Initialize zone tracker after getting first frame dimensions
ret, frame = self.cap.read()
if ret:
h, w = frame.shape[:2]
self.zone_tracker = ZoneTracker(w)
self.frame_width = w
self.frame_height = h
def start(self):
"""Start the camera and processing thread."""
if self.running:
return
self.running = True
self.processing_thread = threading.Thread(target=self._process_loop, daemon=True)
self.processing_thread.start()
def stop(self):
"""Stop the camera and processing thread."""
self.running = False
if self.processing_thread:
self.processing_thread.join(timeout=2.0)
if self.cap:
self.cap.release()
def _process_loop(self):
"""Main processing loop running in background thread."""
while self.running:
ret, frame = self.cap.read()
if not ret:
time.sleep(0.1)
continue
self.frame_counter += 1
# Store current frame
with self.lock:
self.current_frame = frame.copy()
# Process face detection every N frames
if self.frame_counter % self.process_every_n_frames == 0:
processed_frame, counts = self._process_frame(frame)
with self.lock:
self.processed_frame = processed_frame
self.current_counts = counts
def _process_frame(self, frame):
"""
Process a single frame: detect faces, track zones, update counts.
Args:
frame: Input frame from camera
Returns:
Tuple of (processed_frame, counts_dict)
"""
# Detect faces
faces = self.face_detector.detect_faces(frame)
# Track zones and update counts
if self.zone_tracker:
counts = self.zone_tracker.process_faces(faces)
else:
counts = {
'total_entered': 0,
'total_exited': 0,
'current_occupancy': 0
}
# Draw zones on frame
if self.zone_tracker:
processed_frame = self.zone_tracker.draw_zones(frame)
else:
processed_frame = frame.copy()
# Draw faces on frame
processed_frame = self.face_detector.draw_faces(processed_frame, faces)
# Draw count information on frame
text_y = 60
cv2.putText(processed_frame, f"Entered: {counts['total_entered']}",
(10, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.putText(processed_frame, f"Exited: {counts['total_exited']}",
(10, text_y + 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(processed_frame, f"Occupancy: {counts['current_occupancy']}",
(10, text_y + 60), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 0), 2)
return processed_frame, counts
def get_frame(self):
"""
Get the most recent processed frame.
Returns:
JPEG encoded frame bytes, or None if no frame available
"""
with self.lock:
if self.processed_frame is not None:
ret, buffer = cv2.imencode('.jpg', self.processed_frame,
[cv2.IMWRITE_JPEG_QUALITY, 85])
if ret:
return buffer.tobytes()
return None
def get_counts(self):
"""
Get current count statistics.
Returns:
Dictionary with total_entered, total_exited, current_occupancy
"""
with self.lock:
return self.current_counts.copy()
def reset_counts(self):
"""Reset all counters."""
with self.lock:
if self.zone_tracker:
self.zone_tracker.reset_counts()
self.current_counts = {
'total_entered': 0,
'total_exited': 0,
'current_occupancy': 0
}
def __enter__(self):
"""Context manager entry."""
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit."""
self.stop()